Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency
نویسندگان
چکیده
BACKGROUND Physicochemical characteristics of liposome/DNA complexes influence transfection efficiency and affect each other in a very intricate way. The result of this is discrepancies in conclusions drawn about the individual influence of each one. METHODS Aiming to elucidate the influence of liposome/DNA charge ratio and size on transfection efficiency and on each other, we used liposome/DNA complexes with charge ratio (+/-) in the range of 1-50 and extruded through membranes of 400, 200, and 100 nm. Plasmid DNA encoding green fluorescent protein was used to measure transfection efficiency by flow cytometry. Sizes of liposome/DNA complexes were measured by dynamic light scattering. RESULTS Liposome size was reduced after extrusion but this was mainly driven by the charge ratio and not by the size of the membrane pores. Reduction of complex size at each charge ratio positively correlated with transfection efficiency. When the size of the complexes was approximately constant, increasing the charge ratio was found to promote transfection efficiency. Cationic lipid N-(1-(2,3-dioleoyloxy)propyl)N,N,N trimethylammonium chloride was used for modulation of positive charge and a cytotoxicity test showed that increasing its amount increases cytotoxicity. CONCLUSION It can be concluded that charge ratio dictates the size of the complex whereas overall size reduction and higher charge ratios promote transfection efficiency in vitro.
منابع مشابه
Preparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine
Objective(s): Although viral vectors are considered efficient gene transfer agents, their board application has been limited by toxicity, immunogenicity, mutagenicity and small gene carrying capacity. Non-viral vectors are safe but they suffer from low transfection efficiency. In the present study, polyallylamine (PAA) in two molecular weights (15 and 65 kDa) was modified by alkane derivatives ...
متن کاملOptimization of conditions for gene delivery system based on PEI
Objective(s): PEI based nanoparticle (NP) due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of ...
متن کاملEffect of Helper Lipids on Stability and Transfection Activity of Lyophilized Lipoplex Formulations of Antisense and DOTAP Nanoliposomes
Survivin, an inhibitor of apoptosis protein is highly expressed in most cancers and considered as an attractive target for cancer antisense therapy. To vectorize antisense molecules, cationic nanoliposomes are generally used; however, their complexes are too instable, during shelf-life and upon exposure to blood components and extracellular matrix, to be used in-vivo. The present study a...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کامل